Skip to contents

All functions

DLR()
Estimating the Capacity for Improvement in Diagnostic Risk Prediction with an additional marker based on the Diagnostic Likelihood Ratio (DLR)
Paired1
DTComPair-dataset 1
acc.1test()
Accuracy of a Single Binary Diagnostic Test
acc.paired()
Accuracy of Two Binary Diagnostic Tests in a Paired Study Design
dlr.regtest()
Differences in Diagnostic Likelihood Ratios
DTComPair-package DTComPair
Comparison of Binary Diagnostic Tests in a Paired Study Design
ellipse.pv.rpv()
Elliptical joint confidence region for relative positive and negative predictive value
generate.paired()
Generate Dataset from “tab.paired”-Object
print(<acc.1test>)
Print “acc.1test”-Object
print(<acc.paired>)
Print “acc.paired”-Object
print(<tab.1test>)
Print “tab.1test”-Object
print(<tab.paired>)
Print “tab.paired”-Object
pv.gs()
Generalized Score Statistic for Comparison of Predictive Values
pv.prev()
Compute predictive values for theoretical prevalences
pv.rpv()
Comparison of Predictive Values using Relative Predictive Values
pv.wgs()
Weighted Generalized Score Statistic for Comparison of Predictive Values
read.tab.1test()
Read in “tab.1test”-Objects
read.tab.paired()
Read in “tab.paired”-Objects
represent.long()
Long Representation of Results from Two Binary Diagnostic Tests
sesp.diff.ci()
Confidence Intervals for Differences in Sensitivity and Specificity
sesp.exactbinom()
Exact Binomial Test for Differences in Sensitivity and Specificity
sesp.gen.mcnemar()
Generalized McNemar's test
sesp.mcnemar()
McNemar Test for Comparison of Sensitivities and Specificities
sesp.rel()
Comparison of the accuracy of two tests using relative sensitivity and specificity
tab.1test()
Tabulate Single Binary Diagnostic Test vs. Gold-Standard
tab.paired()
Tabulate Results from Two Binary Diagnostic Tests in a Paired Study Design
tpffpf.rel()
Comparison of the accuracy of two tests using relative true positive and false positive fraction