Skip to contents
-
DLR()
- Estimating the Capacity for Improvement in Diagnostic Risk Prediction with an additional marker based on the Diagnostic Likelihood Ratio (DLR)
-
Paired1
- DTComPair-dataset 1
-
acc.1test()
- Accuracy of a Single Binary Diagnostic Test
-
acc.paired()
- Accuracy of Two Binary Diagnostic Tests in a Paired Study Design
-
dlr.regtest()
- Differences in Diagnostic Likelihood Ratios
-
DTComPair-package
DTComPair
- Comparison of Binary Diagnostic Tests in a Paired Study Design
-
ellipse.pv.rpv()
- Elliptical joint confidence region for relative positive and negative predictive value
-
generate.paired()
- Generate Dataset from “tab.paired”-Object
-
print(<acc.1test>)
- Print “acc.1test”-Object
-
print(<acc.paired>)
- Print “acc.paired”-Object
-
print(<tab.1test>)
- Print “tab.1test”-Object
-
print(<tab.paired>)
- Print “tab.paired”-Object
-
pv.gs()
- Generalized Score Statistic for Comparison of Predictive Values
-
pv.prev()
- Compute predictive values for theoretical prevalences
-
pv.rpv()
- Comparison of Predictive Values using Relative Predictive Values
-
pv.wgs()
- Weighted Generalized Score Statistic for Comparison of Predictive Values
-
read.tab.1test()
- Read in “tab.1test”-Objects
-
read.tab.paired()
- Read in “tab.paired”-Objects
-
represent.long()
- Long Representation of Results from Two Binary Diagnostic Tests
-
sesp.diff.ci()
- Confidence Intervals for Differences in Sensitivity and Specificity
-
sesp.exactbinom()
- Exact Binomial Test for Differences in Sensitivity and Specificity
-
sesp.gen.mcnemar()
- Generalized McNemar's test
-
sesp.mcnemar()
- McNemar Test for Comparison of Sensitivities and Specificities
-
sesp.rel()
- Comparison of the accuracy of two tests using relative sensitivity and specificity
-
tab.1test()
- Tabulate Single Binary Diagnostic Test vs. Gold-Standard
-
tab.paired()
- Tabulate Results from Two Binary Diagnostic Tests in a Paired Study Design
-
tpffpf.rel()
- Comparison of the accuracy of two tests using relative true positive and false positive fraction