Accuracy of Two Binary Diagnostic Tests in a Paired Study Design
acc.paired.Rd
Sensitivity and specificity, (positive and negative) predictive values and (positive and negative) diagnostic likelihood ratios of a two binary diagnostic tests in a paired study design.
Arguments
- tab
An object of class
tab.paired
.- alpha
Significance level alpha for 100(1-alpha)%-confidence intervals, the default is 0.05.
- method.ci
A function used to compute the confidence intervals for sensitivity, specificity, and predictive values. The default is
waldci
for Wald's asymptotic normal-based confidence intervals. Seeacc.1test
.- ...
Additional arguments, usually not required.
Details
The calculation of accuracy measures follows standard methodology, e.g. described in Pepe (2003) or Zhou et al. (2011).
The confidence intervals for sensitivity, specificity, and predictive values are computed using the methodology implemented in the function passed to the argument method.ci
.
Confidence intervals for diagnostic likelihood ratios are computed according to Simel et al. (1991).
References
Pepe, M. (2003). The statistical evaluation of medical tests for classifcation and prediction. Oxford Statistical Science Series. Oxford University Press, 1st edition.
Zhou, X., Obuchowski, N., and McClish, D. (2011). Statistical Methods in Diagnostic Medicine. Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken, New Jersey, 2nd edition.
Examples
data(Paired1) # Hypothetical study data
b1 <- tab.paired(d=d, y1=y1, y2=y2, data=Paired1)
b2 <- acc.paired(b1)
print(b2)
#> Diagnostic accuracy of test 'y1'
#>
#> (Estimates, standard errors and 95%-confidence intervals)
#>
#> Est. SE Lower CL Upper CL
#> Sensitivity 0.8802661 0.01528718 0.8503038 0.9102284
#> Specificity 0.6781609 0.02891782 0.6214830 0.7348388
#> PPV 0.8253638 0.01731081 0.7914353 0.8592924
#> NPV 0.7662338 0.02784617 0.7116563 0.8208113
#>
#> Est. SE (log) Lower CL Upper CL
#> PDLR 2.7351124 0.0915147 2.2860079 3.2724472
#> NDLR 0.1765568 0.1346088 0.1356142 0.2298601
#>
#> ----------------------------------------------------------
#> Diagnostic accuracy of test 'y2'
#>
#> (Estimates, standard errors and 95%-confidence intervals)
#>
#> Est. SE Lower CL Upper CL
#> Sensitivity 0.7560976 0.02022128 0.7164646 0.7957305
#> Specificity 0.7969349 0.02490054 0.7481307 0.8457390
#> PPV 0.8654822 0.01718980 0.8317908 0.8991736
#> NPV 0.6540881 0.02667395 0.6018081 0.7063680
#>
#> Est. SE (log) Lower CL Upper CL
#> PDLR 3.7234238 0.1255060 2.9114648 4.7618247
#> NDLR 0.3060507 0.0885996 0.2572629 0.3640906