Differences in Diagnostic Likelihood Ratios
dlr.regtest.Rd
Performs a test for differences in (positive and negative) diagnostic likelihood ratios (DLRs) of two binary diagnostic tests in a paired study using a regression model approach proposed by Gu and Pepe (2009).
Arguments
- tab
An object of class
tab.paired
.- alpha
Significance level alpha for 100(1-alpha)%-confidence intervals, the default is 0.05.
Details
The null hypothesis rDLR = DLR of Test 1 / DLR of Test 2 = 1 is tested with respect to both positive and negative DLRs of the two diagnostic tests.
This function calls DLR
, a general implementation of the method proposed by Gu and Pepe (2009).
Value
A list containing
- pdlr
A list with
test1
(the positive DLR of test 1),test2
(the positive DLR of test 2),ratio
(the ratio of positive DLRs, computed astest1/test2
,se.log
(the standard error of the logarithm ofratio
), thetest.statistic
and the correspondingp.value
.- ndlr
A list with
test1
(the negative DLR of test 1),test2
(the negative DLR of test 2),ratio
(the ratio of negative DLRs, computed astest1/test2
,se.log
(the standard error of the logarithm ofratio
), thetest.statistic
and the correspondingp.value
.- alpha
The significance level alpha used to compute 100(1-alpha)%-confidence intervals for the
ratio
of positive and negative DLRs, the default is 0.05.- method
The name of the method used to compare the positive and negative DLRs, here “diagnostic likelihood regression model (regtest)”.
References
Gu, W. and Pepe, M. S. (2009). Estimating the capacity for improvement in risk prediction with a marker. Biostatistics, 10(1):172-86.
Examples
data(Paired1) # Hypothetical study data
ptab <- tab.paired(d=d, y1=y1, y2=y2, data=Paired1)
ptab
#> Two binary diagnostic tests (paired design)
#>
#> Test1: 'y1'
#> Test2: 'y2'
#>
#> Diseased:
#> Test1 pos. Test1 neg. Total
#> Test2 pos. 319 22 341
#> Test2 neg. 78 32 110
#> Total 397 54 451
#>
#> Non-diseased:
#> Test1 pos. Test1 neg. Total
#> Test2 pos. 31 22 53
#> Test2 neg. 53 155 208
#> Total 84 177 261
#>
dlr.results <- dlr.regtest(ptab)
str(dlr.results)
#> List of 4
#> $ pdlr :List of 8
#> ..$ test1 : num 2.74
#> ..$ test2 : num 3.72
#> ..$ ratio : num 0.735
#> ..$ se.log : num 0.133
#> ..$ test.statistic: num -2.33
#> ..$ p.value : num 0.02
#> ..$ lcl : num 0.566
#> ..$ ucl : num 0.953
#> $ ndlr :List of 8
#> ..$ test1 : num 0.177
#> ..$ test2 : num 0.306
#> ..$ ratio : num 0.577
#> ..$ se.log : num 0.137
#> ..$ test.statistic: num -4
#> ..$ p.value : num 6.22e-05
#> ..$ lcl : num 0.441
#> ..$ ucl : num 0.755
#> $ alpha : num 0.05
#> $ method: chr "DLR regression model (regtest)"
dlr.results
#> $pdlr
#> $pdlr$test1
#> [1] 2.735112
#>
#> $pdlr$test2
#> [1] 3.723424
#>
#> $pdlr$ratio
#> [1] 0.7345692
#>
#> $pdlr$se.log
#> [1] 0.1326086
#>
#> $pdlr$test.statistic
#> [1] -2.326177
#>
#> $pdlr$p.value
#> [1] 0.0200091
#>
#> $pdlr$lcl
#> [1] 0.5664428
#>
#> $pdlr$ucl
#> [1] 0.9525973
#>
#>
#> $ndlr
#> $ndlr$test1
#> [1] 0.1765568
#>
#> $ndlr$test2
#> [1] 0.3060507
#>
#> $ndlr$ratio
#> [1] 0.5768875
#>
#> $ndlr$se.log
#> [1] 0.137376
#>
#> $ndlr$test.statistic
#> [1] -4.004396
#>
#> $ndlr$p.value
#> [1] 6.217627e-05
#>
#> $ndlr$lcl
#> [1] 0.4407136
#>
#> $ndlr$ucl
#> [1] 0.7551371
#>
#>
#> $alpha
#> [1] 0.05
#>
#> $method
#> [1] "DLR regression model (regtest)"
#>