Weighted Generalized Score Statistic for Comparison of Predictive Values
pv.wgs.Rd
Performs a test for differences in (positive and negative) predictive values of two binary diagnostic tests using a weighted generalized score statistic proposed by Kosinski (2013).
Arguments
- tab
An object of class
tab.paired
.
Value
A list containing:
- ppv
A list with
test1
(the positive predictive value of test 1),test2
(the positive predictive value of test 2),diff
(the difference in positive predictive values, computed astest2 - test1
, thetest.statistic
and the correspondingp.value
.- npv
A list with
test1
(the negative predictive value of test 1),test2
(the negative predictive value of test 2),diff
(the difference in negative predictive values, computed astest2 - test1
, thetest.statistic
and the correspondingp.value
.- method
The name of the method used to compare predictive values, here “weighted generalized score statistic (wgs)”.
References
Kosinski, A.S. (2013). A weighted generalized score statistic for comparison of predictive values of diagnostic tests. Stat Med, 32(6):964-77.
Examples
data(Paired1) # Hypothetical study data
ftable(Paired1)
#> y2 0 1
#> d y1
#> 0 0 155 22
#> 1 53 31
#> 1 0 32 22
#> 1 78 319
paired.layout <- tab.paired(d=d, y1=y1, y2=y2, data=Paired1)
paired.layout
#> Two binary diagnostic tests (paired design)
#>
#> Test1: 'y1'
#> Test2: 'y2'
#>
#> Diseased:
#> Test1 pos. Test1 neg. Total
#> Test2 pos. 319 22 341
#> Test2 neg. 78 32 110
#> Total 397 54 451
#>
#> Non-diseased:
#> Test1 pos. Test1 neg. Total
#> Test2 pos. 31 22 53
#> Test2 neg. 53 155 208
#> Total 84 177 261
#>
wgs.results <- pv.wgs(paired.layout)
str(wgs.results)
#> List of 3
#> $ ppv : Named num [1:5] 0.8254 0.8655 0.0401 5.4659 0.0194
#> ..- attr(*, "names")= chr [1:5] "test1" "test2" "diff" "test.statistic" ...
#> $ npv : Named num [1:5] 7.66e-01 6.54e-01 -1.12e-01 1.65e+01 4.78e-05
#> ..- attr(*, "names")= chr [1:5] "test1" "test2" "diff" "test.statistic" ...
#> $ method: chr "weighted generalized score statistic (wgs)"
wgs.results
#> $ppv
#> test1 test2 diff test.statistic p.value
#> 0.82536383 0.86548223 0.04011841 5.46588745 0.01939120
#>
#> $npv
#> test1 test2 diff test.statistic p.value
#> 7.662338e-01 6.540881e-01 -1.121457e-01 1.653540e+01 4.775012e-05
#>
#> $method
#> [1] "weighted generalized score statistic (wgs)"
#>
wgs.results$ppv["p.value"]
#> p.value
#> 0.0193912