Confidence Intervals for Differences in Sensitivity and Specificity
sesp.diff.ci.Rd
Calculates confidence intervals for differences in sensitivity and specificity of two binary diagnostic tests in a paired study design.
Arguments
- tab
An object of class
tab.paired
.- ci.method
The available methods are “
wald
” (Altman, 1991), “agresti-min
” (Agresti and Min, 2005), “bonett-price
” (Bonett and Price, 2011), and “tango
” (Tango, 1998), the default is “wald
”.- alpha
Significance level alpha for 100(1-alpha)%-confidence intervals for the difference in sensitivity and specificity, the default is 0.05.
- cont.corr
A logical value indicating whether the continuity correction should be used (only available for
ci.method="wald"
), the default isFALSE
.
Value
A list containing:
- sensitivity
A vector containing
test1
(the sensitivity of test 1),test2
(the specificity of test 2),diff
(the difference between the two sensitivities, computed astest2 - test1
),diff.se
(the standard error ofdiff
),diff.lcl
(the lower confidence limit ofdiff
) anddiff.ucl
(the upper confidence limit ofdiff
).- specificity
A vector containing
test1
(specificity of test 1),test2
(specificity of test 2),diff
(the difference between the two specificities, computed astest2 - test1
),diff.se
(the standard error ofdiff
),diff.lcl
(the lower confidence limit ofdiff
) anddiff.ucl
(the upper confidence limit ofdiff
).- ci.method
The name of the method used to calculate confidence intervals.
- alpha
The level alpha used to compute 100(1-alpha)%-confidence intervals.
- cont.corr
A logical value indicating whether the continuity correction was applied.
References
Altman, D.G. (1991). Practical statistics for medical research. Chapman & Hall, London.
Agresti, A. and Min, Y. (2005). Simple improved confidence intervals for comparing matched proportions. Stat Med, 24(5): 729-40.
Bonett, D.G., and Price, R.M. (2011). Adjusted Wald confidence intervals for a difference of binomial proportions based on paired data. J Educ Behav Stat, 37(4): 479-488.
Newcombe R.G. (2012). Confidence intervals for proportions and related measures of effect size. Chapman and Hall/CRC Biostatistics Series.
Tango, T. (1998). Equivalence test and confidence interval for the difference in proportions for the paired-sample design. Stat Med, 17(8): 891-908.
Wenzel, D., and Zapf, A. (2013). Difference of two dependent sensitivities and specificities: comparison of various approaches. Biom J, 55(5): 705-718.
Examples
library(DTComPair)
t1 <- read.tab.paired(18, 14, 0, 18,
18, 12, 2, 18)
t1
#> Two binary diagnostic tests (paired design)
#>
#> Test1: 'Noname 1'
#> Test2: 'Noname 2'
#>
#> Diseased:
#> Test1 pos. Test1 neg. Total
#> Test2 pos. 18 14 32
#> Test2 neg. 0 18 18
#> Total 18 32 50
#>
#> Non-diseased:
#> Test1 pos. Test1 neg. Total
#> Test2 pos. 18 12 30
#> Test2 neg. 2 18 20
#> Total 20 30 50
#>
sesp.diff.ci(t1, ci.method="wald", cont.corr=FALSE)
#> $sensitivity
#> test1 test2 diff diff.se diff.lcl diff.ucl
#> 0.36000000 0.64000000 0.28000000 0.06349803 0.15554615 0.40445385
#>
#> $specificity
#> test1 test2 diff diff.se diff.lcl diff.ucl
#> 0.60000000 0.40000000 -0.20000000 0.06928203 -0.33579029 -0.06420971
#>
#> $ci.method
#> [1] "wald"
#>
#> $alpha
#> [1] 0.05
#>
#> $cont.corr
#> [1] FALSE
#>
sesp.diff.ci(t1, ci.method="wald", cont.corr=TRUE)
#> $sensitivity
#> test1 test2 diff diff.se diff.lcl diff.ucl
#> 0.36000000 0.64000000 0.28000000 0.08349803 0.11634687 0.44365313
#>
#> $specificity
#> test1 test2 diff diff.se diff.lcl diff.ucl
#> 0.60000000 0.40000000 -0.20000000 0.08928203 -0.37498957 -0.02501043
#>
#> $ci.method
#> [1] "wald"
#>
#> $alpha
#> [1] 0.05
#>
#> $cont.corr
#> [1] TRUE
#>
sesp.diff.ci(t1, ci.method="agresti-min")
#> $sensitivity
#> test1 test2 diff diff.se diff.lcl diff.ucl
#> 0.36000000 0.64000000 0.28000000 0.06444681 0.15368658 0.40631342
#>
#> $specificity
#> test1 test2 diff diff.se diff.lcl diff.ucl
#> 0.60000000 0.40000000 -0.20000000 0.06954236 -0.33630053 -0.06369947
#>
#> $ci.method
#> [1] "agresti-min"
#>
#> $alpha
#> [1] 0.05
#>
#> $cont.corr
#> [1] FALSE
#>
sesp.diff.ci(t1, ci.method="tango")
#> $sensitivity
#> test1 test2 diff diff.se diff.lcl diff.ucl
#> 0.3600000 0.6400000 0.2800000 NA 0.1747417 0.4166512
#>
#> $specificity
#> test1 test2 diff diff.se diff.lcl diff.ucl
#> 0.60000000 0.40000000 -0.20000000 NA -0.34470882 -0.06111243
#>
#> $ci.method
#> [1] "tango"
#>
#> $alpha
#> [1] 0.05
#>
#> $cont.corr
#> [1] FALSE
#>